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ABSTRACT

The question of thermal equilibrium in the lower icnosphere has
recently led to several conflicting theories. In this report, a
method for the extraction of electron and neutral temperatures from
experimental data is described, and the results of application to
several rocket flights are presented. The electron temperature is
derived from the electrcn collision frequency which is determined
by propagation techniques. This involves the measurement of the
differential absorpticn and Faraday rotation of two waves propagating
in the ionosphere. The neutral temperature is obtained from the scale
height of molecular oxygen, determined from the measurement of the
absorption of solar ultraviolet radiation. The various experimental

and analytical techniques are described in detail.
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1. Introduction

One of the primary properties of the atmosphere is its temperature.
It is used to describe the structure of the atmosphere, and leads to a
classification of the various height regions such as the troposphere,
stratosphere, mesosphere, and thermosphere. In the ionosphere, where
free electrons exist in significant number, it is important to consider
the electron temperature and to compare it with the temperature of the
neutral gas. These temperatures govern various energy distributions,
kinetic parameters, such as recombination coefficients, flux rates of
chemical reactions, and are essential components of almost every formu-
lation pertaining to the ionosphere.

The comparison of electron and neutral temperatures leads to the
important question of thermal equilibrium in the ionosphere. Thermal
equilibrium means that there is an equal energy transfer between the
electrons and the neutral gas, which implies equality of temperatures.
This has been recently examined by several investigators. Above 150 km,
evidence has been accumulated in favor of electron temperature exceeding
the neutral temperature (Evans and Lowenthal, 1964; Brace et al., 1965).
Between 96 and 150 km, Langmuir probe measurements have shown that the
electron and neutral temperatures are unequal, but this result remains
under debate.

Below 90 km, this problem has lead to several conflicting theories.

From a study of photodetachment of electrons from ions, Sears (1965)

concludes that the electron temperature may exceed the neutral temperature,

and supports cross-modulation observations made by Rumi (1962), which



revealed a high electron temperature. Belrose and Hewitt (1964) also
support the non-equilibrium hypothesis, based on the collision frequency
correlation with solar activity. On the other hand, Dalgarno and Henry
(1965) have studied in detail the rates of energy loss of electrons

in the D-region and have concluded that thermal equilibrium exists at
these altitudes.

There has been so far no way of measuring directly the electron
temperature below 100 km, where Langmuir probe theory becomes invalid.
It is the purpose of this work to describe a method of extracting the
electron temperature from the collision frequency of electrons with
neutrals, It is based on the laboratory measurements of Phelps and
Pack (1959) which revealed that the electron collision frequency in
air is directly proportional to the electron energy. The collision
frequency is obtained from radio propagation experiments which measure
the Faraday rotation and differential absorption of a radio wave pro-
pagated from the ground and through the lower regions of the ionosphere,.
The neutral temperature is obtained independently from the scale height
of molecular oxygen, determined from the absorption of the sun's ultra-
violet radiation. A comparison of electron and neutral temperatures is
then possible.

In outline, Chapter 2 reviews several relevant aspects of the pro-
pagation theory, namely, the Appleton-Hartree formulas and the quasi-
longitudinal approximation, and the generalized Appleton-Hartree theory,
as applied to the analysis. Chapter 3 deals with the experimental tech-

niques, description of the payloads and the ground stgtion, and the




reduction of the data. Development of the formulas to obtain electron
densities and extract collision frequencies from the radio propagation
data is described in Chapter 4. Chapter 5 is concerned with the deter-
mination of molecular oxygen concentration and atmospheric pressure from
the ultraviolet absorption measurements. In brief, Chapters 2 to 5
describe the methods which provide the necessary parameters in the cal-
culation of electron and neutral temperatures. 1In Chapter 6, the theories
pertaining to thermal equilibrium conditions are described in detail,

and a formulation of electron temperature in terms of collision fre-
quency is developed. The analysis is then applied to five rocket ex-

periments launched under varying conditions, and the results are presented.



2. RELEVANT ASPECTS OF PROPAGATION THEORY
IN THE IONOSPHERE

Prior to the description of the radio propagation experiment and
the presentation of its results, it is necessary to understand the
properties of the ionosphere, as expressed by the formulas of the magneto-
ionic theory. For this purpose, the Appleton-Hartree formula is rederived
in this chapter with the omission of algebraic details; and the quasi-
longitudinal approximation is discussed with respect to its application
to this analysis. The third section deals with the generalized magneto-

ionic formulas and their importance in this study.

2.1 The Classical Appleton-Hartree Theory

It is well known that in the presence of an imposed magnetic field,
a,wave traveling in an ionized medium is split into the two characteristic
components of the magneto-ionic theory. The ionization in the ionosphere
together with the earth's magnetic field, lead to similar splitting of a
propagating wave. The resultant waves are elliptically polarized, with
opposing senses of rotation, and lead to two complex indices of refraction
(Ratcliffe, 1959).

The formulas for the index of refraction in the ionosphere, commoﬁly
called the Appleton-Hartree formulas (Appleton, 1932; Hartree, 1931), have
been derived with the assumption that the electronic collisions are in-
dependent of the electron energy. The aésumed properties of the medium

include electric neutrality, uniform charge distribution, uniform external

magnetic field, and stationary ions,




For a wave of angular frequency g, propagating in the positive

z~-direction (defined upwards), the électric vector is given by
E = Eo exp Jjlpt-kz) , (2.1)

where Eo is the field at some reference altitude, and may be complex.

The wave propagation constant, k, is connected to the wavelength ) by
2m
K= — » (2.2)
A
Two components of the electric vector are present, one in the

x~-direction, Ex’ and the other in the y-direction, E . These are related

by the polarization R of the wave, which is defined by

. (2.3)

Inserting a field variation of the form expressed by Equation (2.1)
in Maxwell's equations for any homogeneous medium, one obtains an expression

for the complex refractive index, n, given by

2 px Py
n =1 4+ — E =1 + € E ) (2-4)
o X oy
where n is defined by
n=-— (2.5)
w\e



and where so and uo are the capacitivity and permeability of free space,
respectively; and Px and Py are the polarization fields in the x and y
directions.

Furthermore, when an electromagnetic wave is incident on a plasma
in the presence of a magnetic field and collisions, it is best to consider
the motion of an individual electron. Despite the electric neutrality
condition of the plasma, the effect of positive ions can be neglected
because of the great difference in mass between the electron and the
ion. When the electron of mass m, and charge e, is subjected to an

electric field E, it is governed by the equation of motion
e . L]
mr + mvr = -e(r x B) - eE , (2.6)
where v is the electron-neutral collision frequency and B is the flux
density of the magnetic field. The displacement of the electron from
its rest position, r, is related to the dielectric polarization P by
the eduation

P=-Ner, 2.7)

where N is the electron density.




The following accepted symbols are then introduced:

\Y]
=Y 2.8
Z = ( )
2
x N _ Ne® ,
Tw 4 4 (2.9)
€ MmMw
W eB
y=-2 . = , (2.10)
w mw

where the Wy is plasma frequency and wH is the gyrofrequency.
Two components of Y in the (x,z) plane are chosen, one in the longi-

tudinal direction of the wave, Y and the other in the transverse direction,

L’

YT. Equations (2.6) and (2.7) may then be- expressed in a tensor relationship

-1
ec E=M P, (2.11)

where M is a tensor susceptibility expressed by the inverted matrix

1-3Z jYL -JYf

- - -iY -iZ

vt - x7?t 'L 1-J 0 (2.12)
. . -7
JYT 0 1-j

Manipulation of the above constitutive relations and combination with
Maxwell's equations yield the following equation for the wave polarization
2
Y /Y

2 . T L
R + ] I:§:3~z R+1=20. (2.13)



The roots of Equation (2.13) provide the two propagation modes whose

polarizations, R, and Rz, represent two waves of circular polarization

1

+j, rotating in opposite senses. The solution of the quadratic Equation

(2.13) yields

2 4 2

|y, “/ 2y Y/ 4Y l

R = -j T_.___I:‘__ ; 1+_'1_‘__L_ . (2.14)
1 1-X-j2 1-X-jZ '

By substituting Equation (2.14) in Equation (2.4) we obtain an
expression for the complex refractive index
2 X
n =1 -1—_JZ—_JY—I—‘R— . (2.15)

Equation (2.15) is called the Appleton-Hartree formula. The behavior
and properties of the refractive index can be simplified in special cases
when either the magnetic field or collisions are neglected, but these
cases will not be discussed here. However, the important property of
ref}eqtion of the magneto-ionic waves by the ionosphere will now be
considered. Snell's law states that for a wave incident at an angle i
to the normal, the angle ¢ with the normal at a level where the refractive

index is ¥ is given by

Wsing¢ = uo sin i. (2.16)

o
But My = 1 outside the ionosphere, and at reflection ¢= 90 , so that

the refractive index at vreflection, pr, must be equal to sin i. With normal




incidence (i=0) the condition of reflection becomes M, = 0. Thus if the
electron density is sufficiently large to reduce U to zero at some altitude,
then a normally incident wave will be reflected. Otherwise the wave will
penetrate through the layer. Neglecting collisions, an expression for

uz may be derived from Equations (2.14) and (2.15). Setting ¥ = O and
solving for X it is found that one component, called the "ordinary".wave

is reflected at X = 1, as in the absence of magnetic field. The other
component, called the'éxtraordinary“wave, is reflected at either
X=1+Yor X=1 - Y depending on whether the propagation frequency

is smaller or larger than the gyrofrequency.

2.2 The Quasi-longitudinal Approximation

There are two limiting cases associated with the index of refraction,
one of which applies when waves are propagated parallel to the direction
of the magnetic field, the other perpendicular to it. When these cases
are applied to the refractive index formula, the solutions are called
longitudinal and transverse. Furthermore, when the condition expressed
in Equation (2.17) is satisfied, the solution is called quasi-longitudinal.
In this analysis we are concerned with radio waves propagating upwards
through tﬁe ionosphere at mid-latitudes in the Northern hemisphere, and
the quasi-longitudinal approximation is both adequate and valid.

The necessary condition to be satisfied in this case is

2
2
o' [,

<<l - X -3z |, (2.17)
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which reduces the polarization expressed by Equation (2.14) to

R = +j. (2.18)

The +j and ~-j refer to circulafly polarized extraordinary and ordinary
modes respectively. The condition in Equation (2.17) is fulfilled in
this case because the angle between the magnetic field direction and the
z-axis is very small and YT is therefore smaller than YL. From Equation

(2.15), the corresponding form for the refractive index is then given by

1-325Y , (2.19)
where now, the plus sign in front of YL refers to the ordinary wave and
the minus sign to the extraordinary wave.

In the D- and lower E-regions of the ionosphere, where the electron
density seldom exceeds 104 cm—s, a further approximation of Equation (2.19)
is appropriate. For electron densities of this order, the plasma frequency,

fN’ defined by

fN=—;—;r<§€£ : (2.20)
(o]

=

is always much smaller than the propagation frequency (2 mc). Therefore
X<<1, and the index of refraction expressed in Equation (2.19) may be
approximated by

n=1--2%X (2.21)




11

Further algebraic manipulations yield an expression for n in terms

of real and imaginary parts given by

1 X(1+Yg)
n=1-§———“—l‘—2—2—--j_1_ x222 (2.22)
(1+Y )42 2 Q+Y )%z
—-L —L
The complex refractive index expressed above may be expressed by
definition as
n=¥H-3jXx , (2.23)
where
y=1- PXA Y (2.24)
1 +Y )2 + 22 ’
L
and
1 XZ
X =3 ) . (2.25)

: 2
a + YL) + Z

The meaning of these two parametersyu and x, is found from the form

of the traveling wave expressed in Equation (2.1) with
k=k n (2.26)

where ko is the phase constant in free space defined by

Kk = 2T _ % , (2.27)

o )\0

and where c is the speed of light.
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The resulting field may then be written as

= - VA j -
E Eo exp ( Xoko Y exp jwt ukoz) . (2.28)

Equation (2.28) represents a phase shifted wave whose amplitude
is decreasing exponentially with distance. The phase in radians is
given by UROZ, and therefore, ) is called the phase refractive index.
The decay in amplitude per unit distance is measured by the absorption

coefficient k¢ defined as

K = kOX (2.29)

The relative change in the phase refractive index of the two character-
istic propagation waves is a measure of the angle of rotation of the electric
field vector after passage through én ionization slab. This effect, usually
called Faraday rotation, is useful for measuring electron densities, since
by Equation (2.24), U is directly related to N. Similarly, the measurement
of absorption of a traveling radio wave may be used in conjunction with
the electfon density measured by Faraday rotation to obtain the electron
collision frequency, since by Equation (2.25), X is related to both N and
v - These relations will be developed in detail in a following chapter.

2.3 The Generalized Appleton-Hartree Theory

In the derivation of the Appleton-Hartree formulas it was assumed
that the collision frequency was independent of the electron velocity.

The energy dependence of the collision frequency was established by
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Phelps and Pack (1959), whose laboratory results showed that v is directly
proportional to the electron energy. This same result will be used
later for the computation of electron temperatures from collision fre-
quency measurements.,

Based upon the Phelps and Pack result, Sen and Wyller (1960) re-
derived the expressions for the complex refractive index and the state
of polarization of a slightly ionized gas, in the presence of an external
magnetic field and an oscillating electric field. The effects of the
velocity dependence of the collision frequency were evaluated in closed
analytic forms. In the general case where VvV = V n f(v), a new angular
dependent term appeared, the coefficient of which vanished, when v was
assumed constant. The refractive index, then, was the same as that given
by the Appleton-Hartree formula.

By taking into account the velocity dependence of the collision fre-
quency, a proper averaging of the conductivity tensor elements was accom-
plished. The generalized conductivity tensor thus obtaired was found
valid for any velocity distribution function. Since in ionospheric wave
propagation, the electrons are assumed to have a Maxwellian velocity
distributibn, the elements of the tensor were found to be expressible in
terms of previously tabulated integrals. These integrals are called
"C script” integrals and have been tabulated by Dingle, et al., (1957),

and by Burke and Hafa (1963).
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The general expression is given by

1~ P
1§gp (x) = STAJ[ e © 4 (2.30)
o £ + x ’
where
e = '.“ii_T , (2.31)

v is the electron velocity, m is the electronic mass, k is Boltzman's
constant, and T is the temperature,

With the substitution of the symbols defined in Equations (2.8), (2.9),
and (2.10), the expressions derived by Sen and Wyller for the complex

refractive index may be written as

2 2 1
n® = (u-30°=1-7% ¢ iYL)'ég 1L+y
2 2 3/2 = (2.32)
m m
5 X 1+ Y
“J 32 ETﬁéi/z - Ly,
m Z
m
where
\)
7 = - (2.33)

The parameter Vo used in the generalized theory represents the mean
collision frequency'associated with the square of the most probable speed.
The subscript m stands for monoenergetic, which refers to electrons of
energy KT.

When the energy dependence of the collision frequency was taken into
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account, it was found that the absorption factors based on the generalized
theory differed from those based on the classical Appleton-Hartree theory
by amounts varying from 30 to 100 percent . It was then found that im-

proved agreement is obtained when the collision frequency in the Appleton-

Hartree formula, henceforth called v is associated with the mean energy,

AH

namely
3 .
v =35 vg (2.84)

Assuming that the electron gyrofrequency is of the same order as the
propagation frequency, correction factors have been calculated and may

be applied to the Appleton-Hartree collision frequencies. In the
asymptotic limit v<<m(liYL), the Appleton-Hartree formula can be retained

provided that VY _ is replaced by

AH

5
v = = .
AH- 2 Vm- (2.35)
In the other asymptotic limit V>>w(1iYL)’
3
_3 2.
VAH = 2 Vm - (2.36)

In the intermediate.case, however, large errors in the absorption factor
persist and no exact correction factor can be applied. The Appleton-Hartree
theory, then, cannot be retained for this case and the generalized theory

has to be applied.
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The application of this theory to the present analysis was found
to be quite important at the lower altitudes, where the approximation
Z €1 failed to hold. 1In general, although the analysis has been con-
ducted using the Appleton-Hartree formula, some of the results, such
as collision frequency, have been corrected by the multiplicative

factors of the generalized theory.
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3. OUTLINE OF THE EXPERIMENT

During the International Quiet Sun Years (1964-1965), series of
Nike=~Apache rockets, carrying specially instrumented payloads to study
the lower regions of the ionosphere, have been launched from Wallops
Island, Virginia. The aim of the experimental program has been to in-
vestigate the behavior of the D- and E-regions of the ionosphere under
varying diurnal, seasonal and latitudinal conditions. The ionospheric
parameters obtained and studied have been electron density, by measure-
ment of Faraday rotation, standing wave and electron current; collision
frequency, by differential absorption; molecular oxygen density, by
ultraviolet absorption; electron temperature and positive ion density,

by Langmuir probe. The experiments have been conducted by the University

of Illinois in cooperation with the GCA Corporation, Bedford, Massachusetts.

In this chapter, the principle of the radio propagation experiment,
the instrumentation of the payload and the ground station, and the data
reducpion techniques, are described in detail. Other payload experiments
are described briefly.

3.1 Principle of Faraday Rotation and Differential Absorption Measurements

Using Ground-based Transmitters and Rocket-borne Receivers

As explained in Section 2.2, the principle of the radio measurement
of electron density is a comparison of the difference in attenuation
coefficients and phase velocities of the ordinary and extraordinary
magneto-ionic components. Since both parts of the refractive index are

functions of frequency, it is important to choose a frequency low enough
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to yield significant differential absorption and yet have enough signal
left to measure the Faraday rotation. The range of 2 to 4 mc has been
chosen for this experiment to satisfy various ionospheric conditions.
At these frequencies and at medium latitudes, Wallops Island (40°N),
the polarizations are nearly circular and the extraordinary component
is much more heavily absorbed than the ordinary, in the D-region.
Therefore, through a modification of the Beddon (1958) technique, two
oppositely, circularly polarized waves, differing in frequency by

500 cps, are transmitted from the ground. A polarization ellipse is
thus generated, spinning at a rate of 250 rps, as shown in Figure 3.1.
This resultant elliptical polarization becomes nearly circular dde to
differential absorption as the wave enters the ionosphere. The axial
ratio of the éllipse is detected with a magnetic dipole antenna in

the rocket, connected to a fixed-frequency receiver. The 500 cps
modulation signal produced in the output of the rocket receiver is
then telemetered to the ground and serves two purposes, First, it is
compared with the 500 cps reference frequency which produces the pol-
arization rotation, and the relative phase of these two signals gives
the Faraday rotation of the plane of polarization., The second purpose
of the 500 cps telemetered signal is to complete the loop of a servor
mechanism which adjusts the amplitude of the extraordinary circularly
polarized signal to keep the modulation level constant at the payload.
The amplitude of the 500 cps signal at the rocket tends to decrease
due to differential absqrption. 1In terms of polarizatiorn, the ellipse

tends to approach circularity as differential absorption increases,
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and the feedback signal controls an attenuator which readjusts the
transmitted extraordinary power to keep the axial ratio of the ellipse
constant at the rocket. Thus by maintaining the same difference in
the intensity between the two wave components received at the rocket,
the attenuator settings on the ground give a continuous direct measure
of the differential absorption due to the ionosphere.

As noted by Bowhill (1964), radio propagation techniques, in
general, possess several advantages over methods of direct measure-
ment of electron density in so far as no perturbations of the iono-
sphere are produced by the passage of the rocket. With ground-based
transmitters and rocket-borne receivers, the payload instrumentation
becomes simple with respect to antennas, since small ferrite loops
may be used.

The experiment described above yields three parameters, leading
to electron density, which can be measured with great accuracy, and
which can be used in different altitude ranges. Faraday rotation may
be measured in excess of 5000° with an accuracy of 10, up to the extra-
ordinary wave reflection height (approximately 100 km); differential
absorptioﬁ up to a total of 25 db, with an accuracy of 0.2 db, up
to the extraordinary wave reflection height; and ordinary wave re-
fractive index from the standing wave pattern, with 0.05 accuracy,
between the reflection heights of the extraordinary and ordinary waves
(Bowhill, 1965). These measurements, as will be seen later, yield
electron densities from 10 to 105 (:.m—3 over a 100 km altitude range,

covering the D- and E-regions of the ionosphere.
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3.2 Description of the Ground Station

A block diagram of the experimental system is shown in Figure 3.2
(Knoebel, et al., 1965). The two exciters, designated O and X are
crystal-controlled CW coscillators operating at 250 cps above and
below the desired center frequency, 2.225 mc or 3.385 mc. The out-
put of each exciter is controlled by a waveguide-beyond-cutoff atten-
uator, which, in turn, is controlled by the feedback signal from the
rocket. 1In order to obtain circular polarization of the two components,
each signal is then passed through a power divider, which distributes
the power equally to a variable phase shifter and a variable attenuator.
The outputs are added, amplified and then fed to the appropriate antenna.
The array consists of four horizontal half-wave dipoles, elevated one-
quarter wavelength above the ground. The combined space-—and-time
quadrature input results in two circularly polarized waves, in opposite
senses, corresponding to the ordinary and extraordinary waves. Combining
the circular waves with a 500 cps difference results in an elliptically
polarized wave, whose plane of polarization rotates at 250 rps.

To assure circularly polarized transmission, a short horizontal
ferrite rod antenna is rotated mechanically in the middle of the array.
The transmitted modes may then be adjusted independently by means of
the phase shifter and attenuator circuits, until circular polarization
is obtained.

When the telemetry signal is received from the rocket) it is fed

to a modulation discriminator which compares the relative magnitude of
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the ac and dc components of the signal, as a measure of their percent
modulation. If this is different from a predetermined value of 32 pere
cent, corresponding to 10 db difference in the intensity of the two
waves, a dc error signal is generated and activates a servo mector.

The servo motor controls the relative position of the extraordinary
wave attenuator, since the ordinary attenuator is left in a constant
position, until a constant 32 percent modulation is re-established

at the rocket receiver,

In addition to the recording of the various telemetry signals,
the 500 cps reference frequency and the attenuator settings, cali-
brations of the extraordinary and ordinary power, and receiver AGC,
are performed and recorded prior, during and after the launch.

3.3 Description of the Rocket Payload

Two types of payload have been launched during the IQSY program.
One was designated "Type A", and consisted of the radio propagation
experiment, a dc probe, ultraviolet photometers at 1216Ao and 1450A0,
and solar and magnetic aspect sensors. The probe, photometers and
sensors have all been provided by the GCA Corporation, In the other
payload, "fype B", the ultraviolet photometers and the solar aspect
sensor were replaced by an RF probe, provided by J. Sayers, (University
of Birmingham, England), together with either a negatively-biased
spherical probe, after K. Hirao and S. Miyazaki, (Radio Research
Laboratories, Japan), or a spherical ion trap, provided by A. Nagy,
(University of Michigan). Only the Type A ©payload will be discussed

here, since its measurements are needed for the analysis described here.
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The radio propagation experiment is described first. Figure 3.3
shows the instrumentation assembly which consists of the ferrite loop
antenna, the receiver (at the base), and the tuning network. This
part of the payload is enclosed in a fiberglass shell. The ferrite
loop antenna is mounted perpendicular to the longitudinal axis of
the rocket. It consists of two parallel ferrite rods, wound with a
number of turns of insulated wire, depending on the frequency used.

The coil is resonated by several capacitors including a trimmer, which
permits final tuning of the antenna after the payload is completely
assembled. The output of the antenna is fed to a transistorized,
crystal-controlled superheterodyne receiver, with a bandwidth of
approximately 2 kc, which may be manufactured for operation at 2,225 mc
or 3.385 mc. Typical output versus input characteristics of the re-
ceiver are shown in Figure 3.4 (Knoebel, et al., 1965).

Figure 3.5 shows the payload shell and the combined instrumentation
of the various experiments in the payload. The dc probe experiment
(Smith, 1966) consists of the nose tip of the paylcad, insulated from
the remainder of the payload shell which becomes the second electrode.
The technique is derived from Langmuir probe theory, and operates in
two modes, a fixed and a swept potential. The first measures the current
collected by the probe which is held at a constant potential of +2.7 V.
In this mode, the electron current is proportional to the electron
density, and, as will be shown in the next chapter, the proportionality
factor has been found to vary with altitude. The importance of this

aspect of the probe measurement lies in the good height resolution




Figure 3.3 Receiver and antenna assembly.
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Figure 3.5 Photograph of payload instrumentation and shell.
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obtained for the electron current profile. The probe current mpy then
be correlated with the radio measured electron density which possesses
absolute accuracy but lacks fine structure resolution. The second

mode consists of a sweep, -2.7 V to +2.7 V, applied to the nose tip
electrode, to measure the probe current as a function of voltage. By
Langmuir theory analysis, the electron density and the electron temp-
erature may be obtained (Smith, 1965). 1In order to reduce the aspect
sensitivity observed on early flights, the shape of the nose tip
electrode was changed from a conic to an ogive. Instrumentation details
have been given by Smith et al., (1965).

The third important experiment is the measurement of ultraviolet
absorption by means of ion chambers. Two types are included in the
payload. The fiwmst contains nitric oxide at 20 mm pressure and has a
2 mm thick lithium fluoride window; the filling and the window limit
the sensitivity of the chamber to a spectral range from 10504° to 13504°
Solar flux due to the Lyman-g line at 1216Ao is then measured as a
function of rocket altitude, and the absorption profile is used to
obtain molecular oxygen densities in the D- and lower E-regions of the
ionosphere; In addition, the Lyman-g measurement may be used to cale
culate atmospheric pressure. References to this technique, and methods
of analysis are presented in Chapter 5 which is devoted to this experi-
ment. The other ion chamber is sensitive to the spectral band 1425Ao
to 1480A°, provided by a sapphire window and p-xylene and nitrogen gas

fill. It is used primarily to determine molecular oxygen density in
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the E-region, and has recently been found capable of measuring the
concentration profile of ozone in the D-region (Bowhill and Smith, 1965).
Supporting instrumentation aboard the payload includes a solar
aspect sensor which measures the angle at which the ion chambers view
the sun.These data are used to correct the response of the ion chambers
to condition of normal incidence. Together with the ion chambers, the
sensor is protected during launch- by doors which are released at an
altitude of about 55 km. In addition, a magnetic aspect sensor pro-
vides information of vehicle motion, such as spin rate and precession
data;and a baroswitch is used to complement radar data to determine
the trajectory. An FM/FM telemetry system using seven sub-carrier
oscillators has been used to relay the information for the rocket
to the ground.

3.4 Reduction of the Radio Propagation Data

The most important feature of the radio propagation experimental
system described in Section 3.1, is its ability to measure Faraday
rotation and differential absorption with high resolution. The need
for an accurate, high sampling rate of the measured data demands an
automatic and computerized reduction system. Such 2 S8ystem will now
be desribed.

To measure differential absorption, magnetic tape information con-
taining the extraordinary and attenuator monitor voltage and time
signals is transferred to an analog-to-digital recorder at one-sixteenth
speed of original recording. A synchronizer unit then sends these

signals in the form of command pulses to an analog-digital converter,
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which punches the data in binary form. The punched paper tape is then
fed to a digital computer which prints and plots the extraordinary
attenuator settings versus time. Since the data ®re sampled at 100
points per sec, median and average values are also calculated. Typical
computer plotted attenuator settings, marked extraordinary power, are
shown in Figure 3.6, where the absorption spikes at 63, 68, and 83 sec
after launch are due to magnetic tape dropouts and should be dismissed.
The data beyond the extraordinary reflection height at 104 km, corre-
sponding to 86 sec after launch,are meaningless. Since the ordinary
power 1s kept constant throughout the experiment, (20 db for the flight
shown in Fig. 3.6), the differential absorption may be easily computed.
Later, it will be shown that only the rate of change of differential
absorption is needed, and therefore the extraordinary power valhqs
suffice for the calculation of electron density. |

The reduction of the Faraday rotation data is more complex. The
recorded information, from which it is extfacted, contains the sum of
the 500 cps reference frequency, twice the rocket spin and twice the
contribution of the Faraday rotation. 1In order to separate these
signals, the ground-trangmitted wave refprence angle (500 cps) is fed
to a mechanical phase shifter,.whose servo-driven shaft position indicates
twice the Faraday rotation angle. To generate this shaft position, the
following feedback loop is used (Gooch, 1965). The mechanical phase
shifter output is added, in a polyphase heterodyne system, to twice
the rocket roll which is obtained independently from the magnetic aspect

sensor. This forms a relatively noise-free and sinusoidal synthesized
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sum reference which may be compared to the rocket receiver signal.
In the case of the Southern hemisphere launches, the rocket roll is
subtracted, since the ground wave is transmitted in oppcsite sense
to that in the Northern hemisphere. By comparing the synthesized re-
ference signal to the rocket receiver signal by means of a pulse de-
tector, a polarized servo-error signal is produced. The error $ignal
tends to zero when the two signals are in phase quadrature. When
they are not, the error signal excites a servo motor which is mech-
anically coupled to the phase shifter. The shaft revolutions are
geared to a multi-turn potentiometer which yields Faraday rotation
data at 0.0001 volts per degree. This, in turn, is fed to an integra-
ting digital voltmeter which punches the data on paper tape, together
with timing marks. A digital computer finally prints and plots the
data. A typical example is shown in Figure 3.7.

The procedure for reducing the Faraday rotation data to electron
density, and the method of extracting a collision frequency model from

the differential absorption, are the subject of the following chapter.
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4. METHODS OF OBTAINING ELECTRON DENSITY PROFILES
AND COLLISION FREOUENCY MODELS FROM THE

EXPERIMENTAL DATA

In this chapter, the methods of analysis of the experimental radio
propagation data are described in detail. From the expression for the
‘phase refractive index derived in Section 2.2, a formula is developed
for the calculation of electron densities from the Faraday rotation
measurements. Similarly, from the expression for the absorption co-
efficient, and from the knowledge of electron density, an analytical
method is derived to determine the electron collision frequency from
the differential absorption measurements.

However, as explained in Section 2.1, since the frequency of prop-
agation exceeds the gyrofrequency, the extraordinary wave is reflected
at X = 1 - Y. which corresponds usually to a daytime altitude of about
100 km for frequencies in the range 2 to 4 mc. Therefore, above the
extraordinary reflection height, differential absorption and Faraday
rotation cannot be measured. The ordinary wave, however, penetrates
farther into the ionosphere and is reflected when X = 1, which cor-
responds to an altitude at the base of the F-layer. Above the extra-
ordinary reflection height, the electron density is then obtained from
the ordinary phase refractive index. This is determined from the anal-
ysis of the standing wave pattern produced at the rocket by a direct
ordinary wave and a wave reflected from the F-layer.

At low altitudes, below 80 km, where Faraday rotation is very small,
and where the dc probe measurements of electron current tend to over-

estimate the electron density, the collision frequency model 1is
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exXxtrapolated to these altitudes and a range of electron densities is
calculated from the absorption measurements.

These analytical methods are described, and results‘of their
application to several rocket flights are presented. The correlation
between the electron density measured by the radio propagation tech-
nique and the electron current measured by the dc probe is also given,
together with a general comparison of the measured electron collision
frequencies.

4.1 Electron Density from Faraday Rotation Measurements

Faraday rotation has been defined as the angle of rotation of the
electric field vector after passage through an ionization s.ab. It is
measured by the relative change in the phase refractive index of the
two magnetoionic modes. Assuming straight line propagation, and accord-
ing to the resultant field expressed in Equation (2.28), the phase of

the ordinary wave,'ﬂ), may be written as

¢=i—"fuds. (4.1)

where lo is the propagation wavelength in free space, Ho is the ordi-
nary phase refractive index, and s is the distance along the propagation
path. Similarly, the phase of the extraordinary wave, ¢x, may be written
as

27
o = X, u, ds (4.2)

o g"‘\:3‘
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where ux is the extraordinary wave phase refractive index. The phase

difference is then given by

b - b =

27
o) X A

(v - 4 ) ds . (4.3)
o X

o Y=

o

It can be easily seen that if the extraordinary phase changes by an
angle V¥, the resultant phase of the ordinary and extraordinary waves
changes by g . Therefore the Faraday rotation angle, ¢, is defined

by half the phase difference between the ordinary and extraordinary

waves, and is given by

h
m
¢ =5 f (u, - W) ds . (4.4)
o

Assuming that the rocket travels along the ray path, an angle of
elevation, 6, may be defined between the path and the ground plane.

The path differential ds may then be expressed by
ds = dz cosec @ , (4.5)
where z is the altitude measured vertically upwards. Substituting

Equation (4.5) in Equation (4.4) and assuming 6 is constant, the rate

of change of Faraday rotation may be written as

— = ;— cosec ev‘% (uo - uw), (4.6)
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z
where g; is the velocity of the rocket in the z-direction, Vz. Hence

VZ cosec 0 is the velocity of the rocket along the propagation path.

Equation (4.6) is then written as

a¢ _ %— Vz cosec 0 (uo - u) . (4.7)

X
(o]

The phase refractive index has been derived in Section 2.2 for the

quasi-longitudinal approximation, and Equation (2.24) may be expressed

as
% X (1 + YL)
Mo = 1 - 5 (4.8)
(L +Y)+ 2
L
and
1
EX(I-YL)
M =1 - 2 2 . (4.9)
0 (1 -Y)'+z
L
The quantity Uo -.Hx is then calculated, and after several algebraic
manipulations the result is expressed by
2 2
- - Z
Xy, @ -y ) (4.10)

TH TR ~ '
o 'x [(1+YL)2+ZZJ[(1-YL)2+22]

For altitudes above 75 km, where the collision frequency is smaller than

2
the propagation frequency, or Z<<], the term Z may be neglected.
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This simplifies Equation (4.10) to

Ho "= L (4.11)

Substituting Equation (4.11) in Equation (4.7) and sclving for

X, the following expression is obtained

1'YLZ o sing d
X = gt @ . (4.12)

The symbol X has been defined by Equation (2.9) as
2
X = — . (4.13)

Substituting the value for X in Equation (4.12) and sclving for N,

we obtain

m 2 1-Y 2 X
EoW o sin 6 d¢
N = 3 — v It - (4.14)
e L T z

A simplified form of Equation (4.14) is obtained when the values for

the various constants are substituted, thus

N =R %% (4.15)
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where

R=20.66 f ', sing |, (4.16)

-1
and where f is expressed in mc, Vz in the km sec and N is obtained
in cm-s. The parameters 6 and Vz are determined from the radar tra-
jectory of the rocket. The Faraday rotation is measured experimentally,
d¢

and ae  may be easily calculated from the automatically processed data

described in Section 3.4. The parameter Y is computed from the earth's

L
magnetic fie1d>which is determined by means of a Fortran computer pro-
gram (Eckhouse, 1964). A spherical harmonic expansion using Gaussian
coefficients is used, and the input includes geographic positions and
various trajectory parameters.

This technique for the measurement of electron density is relatively
simple and accurate. The measurement of Faraday rotation is obtained in
an unambiguous manner, and most of the difficulties associated with the
same measurement from satellites, as discussed by Bowhill and Schmerling
(1961), are alleviated. The angle of rotation is measured with an
accuracy of lo, but the final height resolution of the electron density
is limited to 1 km. The upper altitude limit for the electron density
obtained by this technique is the height of reflecticn of the extra-
ordinary wave, since no Faraday rotation can be measured above that

altitude. The results of the Faraday rotation measurements for several

tocket flights are presented at the end of the chapter.
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4.2 Determination of the Electron Collision: Frequency from Absorption

Measurements

It has been shown in Section 2.2 that the absorption of radio waves
in an ionized medium depends on the frequency with which electrons
collide with heavy particles. The absorption may then be used to give
an estimate of this collision frequency.

From the Appleton-Hartree formula, Equation (2.25) has been devr
veloped for the imaginary part, y, of the refractive index and may be

expressed as

Lz
X, = 2
XS —e—e (4.17)
(l-YL) +Z .
and
l Xz
Xx_ = __ 2
o — 3 - (4.18)
(1+YL) +2Z

From the resultant electric field expressed in Equation (2.28), the

differential absorption, in nepers, is given by
h
27
= — - . 4.
1n A : f ()(x xo) ds (4.19)
o .
o
Neglecting collisions, and replacing the quantity XxXo by the difference

of the two expressions given by Equations (4.17) and (4.18), the rate of

absorption, in decibels, is




d(ln A)

dt

Examination of Equation
ferential absorption is

by the product XZ. The
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2nm

ds
= — (8.69) (XX‘XO) at (4.20)
o
2X2Y
2m : L ds
= X; (8.69)(;j;—§;§— at (4.21)
L
4m V cosec 8 Y
=x (8.69) =z s L xz (4.22)
© -y, %)

(4.22) shows that the rate of change of difs
proportional to the product NV as represented

electron density, however, is known from the

Faraday rotation measurements, and therefore it is possible to extract

v from Equation (4.22).

For this purpose, we calculate the ratio of the

rate of absorption to the rate of Faraday rotation, obtained from Equations

(4.12) and (4.22), thus

d(ln A) / dt

_4Tx 8.69 Z

dg¢ / dt 180 2 (4.23)
1-Y
L
Since Z = %., then Equation (4.23) may be written as
di(ln A) / dt
soaZ 22 L Ok )
d¢ 7 dt 1Yo (4.24)
where
1
kl = 5 (4.25)

0.36 £ -
1 1 YL )
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The electron collision frequency, as derived from the Appleton-
Hartree formula may now be taken directly proportional to the air

pressure, P, thus

v =k, P . (4.26)

When the value of k_ is found, it is convenient to refer to Equation

2

(4.26) as the collision frequency model in a certain altitude range
for a particular rocket flight. Substituting Equation (4.26) in

Equation (4.24), transposing the ratio, and integrating by parts we

obtain

z
dp - (4.27)
In A = k k, (9P -fo ¢ 3t dt)

Moreover, the hydrostatic equation for the neutral atmosphere gives

@@ _ -P (4.28)

where H is the scale height defined by

kT (4.29)
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and k is Boltzmann's constant, T is the temperature, m is the mean

molecular mass, and g is the acceleration due to gravity. Introducing

dz . .
Vz = 1t in Equation (4.28), we obtain
dp - P
= 5 vz ) (4.30)

Substitution of Equation (4.30) in Equation (4.27) results in

PV,
T do) (4.31)

z
In A = kk, ($p +J£

The term ln A represents the total differential absorption of the
two propagated waves. This relative absorption consists of the deviative
and the non-deviative absorption. Deviative absorption occurs near
the level of reflection and whenever there is marked bending of the
ray as the phase refractive index approaches zero. Non-deviative
absorbtion occurs in the D-region of the ionosphere, where the product
Nv is large, and where the phase refractive index is near unity. In
order to ;pply the absorption measurements to the D-region, it is then
necessary to correct for the deviative type of absorption. When the
imaginary parts of Equation (2.18) are equated and Z2 in the denominator

set to be zero, we obtain

(4.32)
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The difference in attenuation may then be expressed as

1y [ 9

_ g__ (1+Y ) (1-Y.)

Xx Xy = - L (4.33)
LI ;
[0}
(1+Y )2 (1-Y.)
2X 2 1 1 1 1 (4.34)
=(1_YL2)2 4 YL ™ 4 YL U

It should be noted that Equation (4.34) reduces to the non-deviative form
expressed in Equations (4.10) and (4.18) whereiux and o equal one,

Therefore a correction factor of the form

(4.35)

-
"
N
-
N

may be applied to the total absorption to yield the non-deviative absorption,
represented by ln An' The phase refractive indices may be deduced from

the Faraday rotation electron density by

X
- X 4.36
Lg,x =V/l 1 +Y (4.36)

Figure 4.1 shows Y as a function of electron density. As the extra-
ordinary wave approaches the level of reflection, i X and Y approach zero.

When 1n An 1s substituted for ln A in Equation (4.31), and plotted
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versus z

)

P+ ‘LEV dt ,
o H 2z

the value of klkz may be obtained from the smoothed slope of

A (ln A)

z

oL, o)

Since kl is given by Equation (4.25), then k_ may be computed and the

2
collision frequency model is finally obtained. The electron collision

!
frequency thus deduced is assumed to be independent of electron velocity.
In the treatment of the generalized Appleton-Hartree formulas in Section

2.3, it was shown that when V is associated with the mean energy,

AH
improved agreement is obtained between the Appleton-Hartree theory and
the generalized theory. 1In the D-region and above, the collision fre-
quency is much smaller than the propagation frequency (greater than

2mc for our experiment), and in this asymptotic limit, vAH = % Vm ,
where Vo is the collision frequency for monoenergetic electrons

(Sen and Wyller, 1960). Comparison of the collision frequency models
deduced from the absorption for various rocket flights will be presented

at the end of this chapter.

4.3 Electron Density from Differential Absorption Measurements

In order to check the validity of the electron collision frequency

model derived from the absorption data, the electron density should be




re-evaluated using the differential absorption information. This
electron density should match the electron density computed from
Faraday rotation, since the latter values were used to extract the
collision frequency model.

Solving for X in Equation (4.22) we obtain

Ao l-YL

X =7 x8.60 x vV, cosecd Y

(1n A)

N
D-IQ-
o

By substituting the values for the various symbols and constants in

Equation (4.37), the electron density is given by

N = l d(1ln A)
"pp af )
where
2.2
2,14 x 10882 sin 8 7Y )
p= ’
k2 Vz YL
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(4.37)

(4.38)

(4.39)

and where kz is the collision frequency model constant, f is expressed in

. . -1 . . . -3
mc, P in mm of mercury, Vz in km sec , and N is obtained in cm .

If the electron densities calculated by Equations (4.38) and (4.39)

agree with those obtained from the Faraday rotation, then the derived

collision frequency model s correct. For the electron density profiles

shown in Section 4.5, the densities derived by differential absorption
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are superimposed on the Faraday rotation results, and they are seen
to agree satisfactorily.

The ccllision freguency model obtained by the method outlined in
Section 4.2 applies in the same range as the Faraday rotation and dif-
ferential absorption measurements, and is limited at the upper altitude
by the extraordinary reflection height. This ccllision frequency model,
however, may be extrapolated to lower altitudes where the differential
absorption and the dc probe electron current, I, may be used to provide
a range of elcctron densities. Below 80 km, the electron current tends
to overestimate the electron density, whereas above that altitude, it
gives a good measure of the density, as will be shown in Section 4.5.
Therefore if the differential absorption is plotted versuSJ; P}ds,

o

2

where the latter quantity representsJ’ vNds., it is possible to obtain
o

the ratio of electron density to electron current, and to compute a

range of electron densities at these altitudes. Thus

(4.40)

provides a constant slope obtained by drawing a straight line through
the scattered points, and 82 is a slope obtained at each point, Equation

(4.38) may be expressed as

= = NP , (4.41)
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and the electron densi ty is then given by
= p . 4.42

The two slopes S1 and 82 provide the two limits in the range of densities
obtained by this method. The accuracy of this technique depends on whether
the differential absorption is measured with enough resolution at these
altitudes, and whether the dc probe measurements at these altitudes are
dependable. An estimated 25% probable error may be attached to the

range of densities thus obtained, because of the smoothing involved

in the procedure of computing slopes, and due to the extrapolation of

the collision frequency model. Despite this uncertainty, the technique
described above is valuableé since otherwise, no measure of the electron
density at these altitudes may be obtained from the radio propagation
data. Some of the ranges of electron density are shown in Section 4.5.

4.4 Electron Density by Standing Wave Analysis

The Faraday rotation and differential absorption methods described

in the previous sections provide electron densities up to the extra-
ordinary reflection height. The ordinary wave, however, penetrates
farther into the ionosphere and is reflected when X = 1. This cor-
responds to an altitude in the F-region, where the electron density

is large enough to satisfy the reflection condition. The following
analysis describes the method used to obtain the ordinary phase refractive
index, and theréfore the electron density, from the standing wave pattern

produced at the rocket by a direct and a reflected ordinary wave. An
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isotropic, horizontally stratified medium is assumed and the effect
of the curvature of the earth is neglected.

Consider the gecmetry of the various paths drawn in Figure 4.2,
where S represents the rocket path, p the propagation path, Ap an in-
crease in the propagated wave path, and Ar a decrease in the reflected
wave path. The quantity (Ap - Ar) represents an increase in path dif-
ference, and the rate of this increase is a function of the maxima in
the standing wave pattern. The standing wave pattern is cbserved super-
imposed on the output of the rocket receiver which is printed with high
resclution on telemetry charts., The rate of path difference may be
calcuiated from the trajectory in the following manner. Consider a
direct ordinary wave that has penetrated the E-layer and has reached
an altitude z which corresponds to the position cf the rccket. The
path length of this direct wave, given by b in Figure 4.3, represents
the slant range of the rocket, and the angle of the propagation wave,
0, is the elevation angle cf the trajectory. Another direct wave
reaches a height h, where the condition for reflection is satisfied,
and is reflectéd down to meet the direct wave at the rocket. These
two vectoréz the direct and reflected waves, add to form a standing
wave which is projected along the path of the rocket. The height h
may be obtained frcm an icncgram taken at the time of the flight, after
appropriate corrections are made for conversion from virtual to real
height. Mcreover, the refractive properties of the ioncsphere cause
the penetrating ray to bend as it propagates. Hcwever, by the Breit
and Tuve theorem (Budden, 1961), a triangulated path is a valid approx-

imation to associate with the exact ray path.
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Figure 4.2 Geometry of ray paths for standing wave analysis.
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This is shown in Figure 4.3. Therefore, since the wave is reflected
at an angle equal to the incidence angle, the reflected wave may be
assumed to have originated at a mirror point I, at an altitude of 2h.
Then by the cosine law,

m2 = 4h2 + b2 - 4hb sin6 (4.43)

db
Differentiating with respect to time, and subtracting It from both sides,

we obtain

db dm . 2h . b} db 2hb dé
a: a; —(j. + a—- sin 6 - n—1' d—t + — s 0 d—t (4.44)
. db dm . . . .
The quantity 3t " 4t is equivalent to the rate of change in path dif-
i

ference. The ordirary phase refractive index, uo, under the assumptions

presented above, is given by

>

-— ov

Bo = , (4.45)

-

where )\ is the wavelength in the medium and Xo is the wavelength in free

space, This ratic may be given by

d(sw)
Ao dt A
uo = ;— = EB 3 QE ) (4.46)
dr dr o
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d
where %—)/)\ represents the number of standing wave maxima per second
. . db  dm A
counted on the receiver output telemetry chart. The quantity at -3t (4]

may be evaluated for each corresponding altitude and uo can then be
found as a functicn of height. For Z << 1, the ordinary phase refrac-

tive index has been given in Equation (4.8) by

%x
= - 4,47
Ho 1 1+Y ( )
L
Then, solving for X and substituting the values of the symbols and
constants, we obtain an expression for electren density in cm
4 2 2
N=1.24x10 £ (1 + YL) (1 - UO ) I (4.48)

where f is in mc.

The main difficulty in the analysis presented above is the counting
of the standing wave maxima superimposed on the receiver output. Often,
this output becomes noisy at the higher altitudes and the interference
pattern is not easily resolved. Several criteria have been set for
cycle couﬁting in order to take account of possible phase reversals,
but the uncertainty in the results ocf several rocket flights exceeds
an estimated probable error of 20%.

In general, the electron density derived by the standing wave
analysis agreed satisfactorily with the electron current prcfile
measured by the dc probe. It will be seen from the results of the next

section that in the region above 100 km, there is =almost exact
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proportionality between the electron current and the electron density.
The electron density computed by this method has also been used to
obtain an aspect correcticn for the probe current at these altitudes,

as will be shown for rocket flight 14.146.

4.5 Sample Results and Correlation with Electron Current

In a forthcoming report by Salah and Bowhill (1966), the details
involved in the various analysis techniques, and the electron densities
and collision frequencies measured by the rockets during the International
Quiet Sun Years will bevpresented. In the present work, however, a
sample of the results will be given to illustrate the applicatiocn of
the various methods described in the preceeding sections. Table 4.1
gives some of the relevant data describing the rocket flights whose
results will be given here.

The series of rcocket flights 14.144, 14.145, and 14.146 was launched
to study the role of photodetachment in the lower D-region of the iono-
sphere and the structure changes of the ionosphere from night to day-
time (Bowhill and Smith, 1965). The first rocket was launched before
layer sunrise, when no visible radiation was incident on the layer;
the second was launched after layer sunrise but before ground sunrise
when cnly visible radiation was present in the D-region; the third
rocket was launched after ground sunrise. The series 14.230, 14.231,
and 14.232 was a part of a five rocket series launched from aboard
NASA's mobile carrier, USNS CROATAN, in the southern hemisphere, to

study the latitudinal variations in electron density. Flight 14,246
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Flight Date of Time of Solar Geographic Propagation
Number Launch Launch Zenith Position Frequency
Angle

14.144 15 July 1964 0300:00 EST 105° Wallops Island, Va.* 2.225 mc

o

14.145 15 July 1964 0420:00 EST  96° Wallops Island, Va. 2.225 mc
14.146 15 July 1964 0520:00 EST 85o Wallops Island, Va. 2.225 mc
14.230 5 April 1965 0845:53 EST  58° 29°34's, 75°13'w 3.385 mc
14.231 9 April 1965 1418:15 EST  60°  44°15's, 77°40'W 3.385 mc
14.232 12 April 1965 1214:02 EST  67° 58°19's, 78° W 3.385 mc
14.246 17 June 1964 1641:00 EST 60° Wallops Island, Va. 3.385 mc

*
Wallops Island, Va. :37° 50'N, 75° 29'W

Table 4.1 Launch data for several rocket flights.
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was launched in June as a part of a study of seasonal variaticns in
electron density.

Figure 4.4 shows the electron density profile for rocket flight
14.146 computed by the various radio propagation methods, super-
imposed upon the electron current measured by the dc probe. The
densities derived from differential absorption agree with those of
Faraday rotation, thus confirming the collision frequency model.
Between 110 and 140 km the standing wave electron density deviates
from the electron current, and in this interval, using the mean value
of electron density, an aspect correction has been evaluated for the
probe current. Below 80 km, the electron density range shows that the
electron current indicates an electron density about 10 larger than its
actual value. It may also be observed from the two profiles that the
electron current possesses good height resolution, whereas the radio
propagation data yields only an average electron density over a 1 km
interval. Therefore these two measurements may be combined to produce
a final electron density prcfile which possesses the accuracy of the
radio propagation technique and the good height resolution of the probe
current. For this purpose the ratio of electron density to electron
current is computed at every altitude.

It has been shown that the radio propagation data yield an average
electron density value centered in the middle of a 1 km interval,
whereas the electron current data are read each 0.1 sec, corresponding
to 10'electron current values per km. In order to compute the ratio

of electron density to electron current at every km, a weighted average
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value of the electron current must be calculated for every 1 km interval.
For this purpose, the current reading corresponding to the center of

the interval is multiplied by a certain factor, such as 10, the two
readings before and after the center value are multiplied by a factor

of 9, and so on in decreasing order., The sum of these products is then
divided by the sum of the weighting factors, and thus a weighted average
is obtained at the center of the interval. The ratio of the average
electron density to the weighted average electron current may then be
calculated and plotted versus altitude. A smoothed curve is drawn
through the various points. When this calibration curve is multiplied
by the electron current data, a final electron demsity profile is
obtained. A typical example of the calibration curve is shown in Figure
4.5, and final profiles for 14.144, 14.145, and 14.146 are shown in
Figure 4.6.

In Figure 4.6, the electron density in the E-region is seen to in-
crease from its nighttime value to its normal daytime value. At about
70 km, the formation of a C-layer is observed on these flights, as
the region is slowly exposed to solar ultraviolet radiation in the
wavelength range 1800 to 2900 AO. The C-layer is fully developed in
14.146. Based upon this, it was indicated by Bowhill and Smith (1965)
that no photodetachment occurs until radiation at wavelengths smaller
than 2900 Ao illuminates the region. This lead to the conclusion that

-

O2 is not the dominant negative ion in that region at twilight, as

had been generally assumed. If 02_ had been dominant, electrons would

have been relased by solar visible radiation and would have been observed

on the second flight.
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In addition, two strong Sporadic E layers are observed during each
of the three flights, with densities of the order of 104 cm_3, The
characteristics of these layers have been discussed by Bowhill (1966).

In Figure 4.7, the radio propagation results for the latitude series
14.230, 14,231, and 14,232 are shown. Abowe 100 km, a constant electron
density is observed for all three flights, whereas below 80 km the
electron density appears to be largest for the flight closest to the
equator and smallest for the southernmost fli#ghts.

Finally, a comparison of the monoenergetic collision frequencies
for these flights is given in Figure 4.8, Good agreement is observed
with the summer and winter results given by Deeks (1966), and the

models given by Belrose (1964) and Fejer (1962).
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5. CALCULATION OF ATMOSPHERIC PRESSURE FROM
ULTRAVIOLET EXTINCTION MEASUREMENTS

In order to calculate the collision frequency, it is necessary to
know the variation of atmospheric pressure with height, since v was
found to be directly proportional to P. For the purpose of the electron
density analysis, model atmosphere pressure values have been used.
However, it is possible to calculate the atmospheric pressure from the
knowledge of the absorption of solar radiation, such as Lyman-o flux.
The exact calculation of the observed pressure is valuable for appli-
cation to the extraction of electron temperatures from collision fwegquencies
as will be described in the next chapter. The method of analysis of
ultraviolet radiation measurements and their reduction to atmospheric
pressure are discussed in this chapter. Sample results are also given

and compared to model atmosphere values,

5,1 Determination of Molecular Oxygen Concentration from Lyman-e Absorption

An accurate determination of the concentration of atmospheric constit-
uents may be obtained from the measurement of absorption of solar radiation
in a specific wavelength band. To achieve this purpose, an ion chamber
with a particular gas fill and window material may be used. The gas fill
provides the desired long wavelength cut-off whereas the window material
limits the short wavelength cut-off, thus fixing the bandpass of the radi-
ation measurements (Friedman, 1960).

Throughout much of the vacuum ultraviolet spectrum above 1000 AO,

molecular oxygen is the primary absorbing constituent in the upper atmosphere.
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Measurement of the absorption of solar hydrogen Lyman-y (1216 X) may
then be used to determine the concentration of modecular oxygen. The
height range of these measurements depends on the solar zenith angle
because of the change in radiation path, and on the absorbing character-
istics of the atmosphere at this wavelength.

For Lyman-o absorption measurementé,am ion chamber filled with
nitric oxide at a pressure of 20 mm and a 2 mm thick lithium fluoride
window has been used (Chubb, et al., 195¢). This provides a bandpass
of 1050 AO to 1350 AO. In this part of the solar spectrum, Lyman-u
is the strongest emission line and its intensity has been estimated
to be about 5.1 ergs cm-z sec (Hall, et al., 1963). Thus despite the
wide bandpass of the ion chamber, the measured flux can be considered
to be essentially all Lyman-® radiation. Figure 5.1 shows the unit
optical depth, defined as the altitude at which the intensity of solar
radiation drops to 1/e of its value outside the earth's atmosphere, for
vertical incidence (Nawrocki, et El" 1961). Lyman~® reaches unit optical
depth at about 75 km,

The flux of radiation measured at a certain altitude z is given by

the folloWing expression:
I(z) =1 exp (-on) , (5.1)
. T

where 1 is the flux at the top of the atmosphere,s is the absorption

co

cross~section at the radiation wavelength and nT is the columnar number

density between the observation point and the sun. For monochromatic
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radiation incident on the chamber, the radiation flux is proportional
to the measured ion chamber current.

Equation (5.1) may be written in its differential form:
1 dI T
Z /= = - 00— 5.2
1 dz ( )

where it is seen that an absolute calibration of the ion chamber to
determine L» is not necessary.

The columnar number density may be evaluated for two different
approximations. When the solar zenith angle X is small, the flat

earth approximation is valid. Then, fvom Figure 5.2,

dnT

T -n(z) sec X . (5.3)
Substituting in Equation (5.2),

n(z) = —= 1 4 (5.4)

g sec X I dz

This apprdximation is valid for x§73° with a maximum error of 1% which
reaches 10% at X = 85°.

~For larger solar zenith angles earth curvature has to be taken into

m

In
2

account and approximate solutions may be obtained for x>%-and X<
Equation (5.4) sec x is replaced by F, the optical depth factor.
Near grazing incidence, 800<x< 900, the optical depth factor is the

Chapman function Ch (X,x), where X=§%E , for a constant scale height




SUN

dz dz sec y
obs.

STTT7 7777777777777

Figure 5.2 Geometry of incoming radiation
for flat earth approximation.

Figure 5.3 Geometry of incoming radiation for
general case X > [

7
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gradient, Approximate solutions for different scale heights also have
been obtained by Swider (1964).

ForX?%” the concentration of molecular oxygen is calculated in
terms of the minimum ray height; which is the altitude of the closest
approach(of the radiation to the earth. From the geometry of Figure

5.3, the minimum ray height h is given by the following equation:
h=(R + z) cos (x-909 -R (5.5)

where R is the radius of the earth.
The columnar number density is then given by:
® obs
nT(h) =} nds + nds , (5.6)
o o
where s is measured away from O,
Assuming an exponential distribution of density, defined by a constant

scale height H, the concentration may be expressed in terms of the minimum

ray height:as:

1 1 dI
nh) = F Tan ° (5.7
where
101.4 « -90°)
. : 1 £ (5.8)
= B ™ I

Figure 5.4 shows the ion chamber current obtained for the two flights

launched at sunrise on July 15, 1964 (Smith and Weeks, 1965). The data
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has been normalized to zero aspect angle to account for the direction
of the incoming radiation. It is observed that a small difference of
zenith angle between ascent and descent data produces a pronounced effect
on the shape and range of the absorption profiles.

In the derivation of molecular oxygen concentration from this data,
a value of .27 cmn1 has been used for the absorption coefficient, @, of
molecular oxygen at Lyman- & wavelength (Watanabe, 1958). This is related

to the absorption cross-section by

(5.9)

where N is the number density of molecules per unit ¥olume at normal temperature
and pressure (2.69 x 1019 cm-a). The cross section used is thus 1 x lo-zocmz.
Typical molecular oxygen density profiles are shown in Figure 5.5
(Smith and Weeks, 1965). These results are in very good agreement with
molecular oxygen concentration given in most atmospheric models.
The effect of zenith angle on the altitude range of measurements is
quite noticeable. At X=84o the range is about 80 to 108 km, whereas at
x=95" the range is about 90 to 112 km.
These plotted data fit well the average scale height of 6.6 km.
The difference in number density between the two flights may be due to
the approximations applied for the calculation of 14.145 where x>;
The technique to measure the Lyman-a radiation flux is relatively
simple and quite dependable. The main uncertainty in these measurements

may develop from the absorption coefficient where errors as large as 25%

may be introduced (Smith and Weeks, 1965),
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5.2. Calculation Qf Atmospheric Pressure From Ultraviolet Bxtinction

Measurement,

In the preceeding section it has been shown that the molecular
oxygen concentration may be obtained from the measurement of Lyman-—g
absorption. The general equation governing this measurement may be

expressed as

1
n(0,) = = J , (5.10)
where
J=% -g% for i < 7 + (5.11)
or
J=% % fory > 7 . (5.12)

Solving for J in Equation (5.10) and integrating from z to infinity,

we obtain

f Jdz =of F n(0,) dz . (5.13)

The optical depth factor F is a function of zenith angde X and scale
height, H. However, since this analysis is concerned with a relatively
small altitude range, mainly 80 to 100 km, in which an average scale
height is dominant, and across which the zenith angle barely changes, F
may be considered independent of altitude. In the following numericatl’

analysis, the optical depth factor is calculated at one scale height above




the lower altitude limit, since only an average value of F can be assumed
across the integration interval. In this manner, F may be assumed constant
and the integration is simplified. The value one scale height was deter-
mined by carrying out the integration with a linear function being assumed
for the optical depth factor.

In Equation (5.4), the concentration of molecular oxygen has already
been determined. Then, a model atmosphere may be used to obtain the

nitrogen and atomic oxygen concentrations and therefore determine the
l*(02)
P 2
n(M) -

Hanson and Johnson (1965) has been used, for which the ratio

ratio. For this purpose a model atmosphere suggested by Colegrove,
n{o)
n(Oz)

is taken as unity, corresponding to an eddy diffusion coefficient of

at 120 km

4.04 x 106 cm2 sec 1 which agrees with experimentally estimated values.
Figure 5.6 shows this atmospheric model together with the measured molecular
oxygen concentration for the two flights mentioned earlier.

In the evaluation of the ratio of molecular oxygen concentration to
the total number density, dissociation of molecular oxygen at the higher
altitudes must be taken into account. However, the dissociation of molec-
‘ular oxygen, which is an important chemical effect of solar radiation at
ultraviolet wavelengths, takes place principally around the 110 km level.
Therefore, below 100 km, the ratio of molecular oxygen to the total number
density may be assumed constant.

Based upon the above, a new average constant, Kr, may be defined as

n(0.)
K = 2

r = RGO .14



*(g961 ‘uosuyof
pue uosueH ‘aa0x3a10) I931FIe) opn1TiIe Snsaaa

$3uaN3}1}suod oraaydsowle a8yl JO UOTIBIIUBDOUOD 9°'G aan3tJd

(s}
~
(¢-wo) ALISN3G ¥3BWNN
sl Ol ¢iOl 20! 10! o0l
T 1 I I
(20)u
.. IN3OSV -
bl bl
i JUIHISONLY (0)u T
QYVANVLS SN (W)U o—o
NOSNHO 8
HOSNVH ‘3A0893109 (W)U o—o J
wyoet
. . (%0)u
| 28sgud 01X bOb =N = _“AQL .
NOSNHOP 8 NOSNVH ‘ 3A0493109
300N NOILISOdNOD JIMIHISOWLY
1 1 1

0L

08

06

oll

océl

otl

(wy) 3aNLILV




77

Equation (5.13) may then be expressed as

00 o0
Jdz = JFKr n(M)dz . (5.15)
z z

The total number density is related to the atmospheric pressure

by the perfect gas equation
P(M) = n(M) KT, (5.16)

where k is Boltzmann's constant, and T the absolute temperature. The use
of this equation in the D-and lower E-regions is justified by the very
low pressures existing in these regions.

Furthermore, from the consideration of the hydrostatic equation
(5.17)

an exponential atmosphere may be assumed if H is considered constant in
the region of interest, mainly 80, t0,190 km. In this region, the consti-
tuents of .the earth's atmosphere are in a well mixed state, thus giving
a uniform composition. The temperature gradient is small in that region
and justifies the assumption of an isothermal model. Finally, neglecting
the variation of gravity in that small range, the pressure distribution

may be expressed as

P(M) = PO(M) exp

L (5.18)
H
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where the subscript o refers to a reference height z=z°.

Equation (5.15) may therefore be evaluated in terms of pressure

[- -] (-]
_ P(M)
Jdz =g E‘l(r KT dz
z n
-]
2=z
= o FK PO(M) exp [ O dz
KT H--
n z .
~ o-’FKrP(l)
an (56.19)
and the observed pressure is then written as
o0
Jdz
P(M) = an ‘Ez
aFK H (56.20)

Table 5.1 shows the results of the computations for 14.145 and 14.146.
This is compared with atmospheric pressure given by the U.S. Standard
Atmosphere, 1962. For 14.145, the observed pressure is seen to differ
from model atmosphere values by an average factor of 1.1, while for 14.146
the factor is 0.98, Despite the several approximations made throughout
the analysis, particularly in the optical depth evaluation, this analytical

method seems to yield favorable results.
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Altitude 14.145 U.S. Standard Atmosphere 1962 14.146
(km)
80 10.35 8.37
82 7.18 7.08
84 4.97 5.83
86 3.43 3.31
88 2.37 2.49
90 1.42 1.64 1.91
92 1.14 1.14 1.49
94 . 803 .806 1.11
96 .565 .575 .69
98 .408 .413 .572
100 .36 .3 .421

Table 5.1. Comparisog of computed atmospheric pressure
(dynes/cm”) with U.S. Standard Atmosphere
1962,
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6. CALCULATION OF ELECTRON TEMPERATURE FROM ABSORPTION MEASUREMENTS

The following sections describe the conflicting theories pertaining
to the thermal equilibrium of electrons in the lower ionosphere, and the
laboratory measurements of the collision frequency in air, upon which
the electron temperature calculations are based. A mathematical formula
is developed for the electron temperature, and applied to the data from
five rocket experiments. The electron temperature is then compared with
the neutral temperature, which is extracted from the scale height of the

molecular oxygen, and the results are discussed.

6.1 Theories Relating Electron and Neutral Temperatures in the D-Region

In recent years, it has become evident that the electron temperature,
Te, exceeds the neutral temberature, Tn’ in the upper atmospheric regions,
mainly above 150 km (Evans and Lowenthal, 1964; Brace, et al., 1965).

In the D-region, however, it has been customary to assume that the
electrons have a Maxwellian velocity distribution characterized by‘Té,
under thermal equilibrium conditions. This important question of thermal
equilibrium of electrons with neutral molecules has led to several con-
flicting theories.

From'a study of the competing processes of collisional energy loss
and electron dissociative attachment to oxygen molecules, Sears (1963)
has shown that a knowledge of the characteristic.times of these processes
may be used to relate temperature and electron density measurements.

The energy distribution for the photodetachment of electrons from negative
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ions, as obtained from experimental data, was found to have an average
energy of 2.9 ev. This non-thermal energy leads him to conclude that

Te would exceed Tn in the D-region, and to support the cross modulation
observations made by Rumi (1962) who has measured an electron temperature
of 1200°K at an altitude of 40 km. 1In addition, Belrose and Hewitt (1964)
have shown that the electron collision frequency in the D-region is
strongly correlated with solar activity. They suggest that since electron
collision frequency depends on electron temperature, the results of this
correlation tend to indicate that Te might be higher than Tn’ under

quiet conditions.

On the other hand, a recent study of the effects'of elastic colli-
sions and rotational and vibrational excitation of molecules on the
dissipation of electron energy, has led Dalgarno and Henry (1965) to
make detailed estimates of the rates of energy loss of electrons in
the D-region. Their calculations show that the electron gas has a
negligible non-thermal component and that the main mechanism tending
to establish thermal equilibrium consists of rotational transitions in
molecular nitrogen. Therefore if electrons in the D-region have a
Maxwellian distribution, it will be characterized by Tn'

In the upper atmospheric regions above 150 km,it is found that
energy loss through elastic collisions with ambient electrons is an
important mechanism for heating the latter and maintaining Te above
Tn (Dalgarno, et al. 1963). In the D-region, on the contrary, energy
loss in elastic collisiéns with molecules in negligible compared to loss

through rotational transitions.
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It is the object of this section to demonstrate how an average
value of electron temperature may be calculated from radio absorption
measurements in the D-region for several experiments conducted at various
solar zenith angles. The results, it will be observed, support the
Dalgarno and Henry theory whereby thermal equilibrium conditions are
seen to prevail in the D-region.

6.2 Theory of Calculation of Electron Temperature from Collision Frequency

Several methods of measurement of electron temperatures in the
upper atmosphere have been developed, most recent of which is the Langmuir
probe technique (Spencer, et al., 1962). From the current-voltage charac -
teristic of the probe, the electron temperature is obtained as a function
of altitude, This procedure, however, is not useful for heights below
100 km where the mean free path is not large compared with the Debye
length.
In view of the above, a method to obtain electron temperatures
from the collision frequency of electrons with neutrals may be considered.
The electron collision frequency, V, is usually expressed in terms

of the following equation

=N gV (6.1)
where N is the electron gas density, ¢ is the collision cross-section,
and v is the electron velocity.
As mentioned in Section 2.1, the Appleton-Hartree formulas assume

that the collision frequency is independent of electron velocity. This
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is a special case of possible -velocity dependences for the ocolli-
sion frequency, namely , is constant.

In recent years, however, measurementsof collision frequency made
in the laboratory for various gases has shown that the velocity depend-
ence of collision frequency varies from gas to gas. For nitrogen, the
major constituent of the ionosphere, Phelps and Pack (1959) used an
improved version of the electron drift velocity tube (Bradbury and Nielsen,
1936) to measure the mobility of electrom at such low electric fields
that the electrons are in thermal equilibrium with the gas. The measure-
ment was in terms of the product of the electron mobility and the gas
density at 77o K and at room temperatures. These results were then ex-
pressed in terms of the momentum transfer collision frequencies for
monoenergetic electrons (u = kT) as a function of electron energy. These
data are presented in Figure 6.1, where it is shown that the electron
collision frequency is very nearly directly proportional to electron
energy, or Te.

This result has been supported by thermal equilibrium measurements
of microwave conductivity made by Phelps, Fundingsland, and Brown (1951).
The results are also shown in Figure 6.1 and are seen to agree very well
with the éhelps and Pack function.

Even though nitrogen is the major constituent of the ionosphere,
an estimate of collision frequency of electrons in oxygen must be made
before the above results are generalized for air. Drift velocity measure-
ments (Nielsen and Bradbury, 1937) and diffusion data (Healey and Reed,

1951) in oxygen have shown that collision frequency of electrons in
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oxygen is about two~thirds of that for nitrogen down to 0.2 electron

volts. Assuming that this same ratio holds at thermal energies, the

errors introduced when collision frequency for air is taken equal to

that for the nitrogen alone is less than 7%. Moreover, Huxley (1959)

has compared average collision cross sections obtained from measurements

in air and in nitrogen and concluded that the effect of oxygen is negligible.

.In air, therefore, the collision frequency is directly proportional
to v2 or to Te.

Comparison of these and other laboratory measurements (Crompton and
Sutton, 1952; Anderson and Goldstein, 1956) with rocket measurements
(Kane, 1959) showed a factor of three difference between both results.
In an attempt to resolve this discrepancy, Nicolet (1959) analyzed the
results in term of collision cross sections. He showed that below the
Fl;layer electronic collisions are mainly with neutral particles. The
collision frequency was then expressed directly proportional to the mean

thermal velocity of electrons at Te as

) (6.2)

where."cz, the cross section was assumed constant. By decreasing the

cross section wvalue until the expemnental and observational data were

reconciled, an expression was written for the collision frequency of

electrons with neutral particles and was adapted for aeronomic purposes.
-15

2 .
The new cross section, namely 15 au, (1.32 x 10 cm ) agrees with that

given by Phelps, Fundingsland, and Brown.
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In view of the Phelps and Pack resulis, a generalization of the

Appleton-Hartree magneto-ionic formulas has been derived by Sen and
Wyller (1960). As stated in Section 2.3, correction factors for vAH
are derived in the asymptotic - limits of w<<«w and w>>w, This treat-
ment has finally correlated successfully the rocket measurements with

the laboratory results.

6.3 Method of Calculation of Electron Temperature

Based upon the Phelps and Pack results, the collision frequency

of monoenergetic electrons, vm, in air may be expressed as

<

m
— =K E 6.3
n PP ) ( )

where n is the number density, and E is the most probable electron energy.
Substituting for E and solving for Te, the following equation is

obtained

[e \ o

Te = KK _m (6.4)
PP n

In Section 4.2, an Appleton-Hartree collision model has been derived

and expressed as
\V =Kk P (6.5)

in which VAH has been assumed independent of electron velocity and where

Pm indicates model atmospheric pressure.
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By means of the Sen and Wyller approximations,w may now be

AH
associated with the energy distribution by multiplying VAH by the following

factors,

VAH in the limit Jk¢ wts

2
Vo =3 ”AH in the limit u>y WS (6.6)

The radio propagation experiment has been undertaken with frequencies
3.385 mc and 2.225 mc, and in the D-region, around 80 km, the collision
frequency is of the order of 106 sec-l. Therefore, for altitudes above
80 km, y<<Ws and the appro&imat;on Vm = é_vAH.may be used.

2
vV = =V
Substituting n 5 VaH in Equation (4), we obtain

e MaH (6.7)

By means of the perfect gas law, the number density n may be written

in terms of the observed pressure calculated in Section 5.2 as
-~

P jf
_ iobs _Jz JU* (6.8)
=% ~oFKH
n r

and the electron temperature is then finally expressed as

o
Q
o]
=
=
<

r AH | (6.9)

-3
]
(31} V]

&
o



88

Since only one measurement of Vv from the absorption data is made
for each pocket experiment, only an average Te may be calculated. The
range of altitudes in which this avem ge value is valid is governed by
the altitude limits at which the collision model is derived, and by the
altitude limits of the Lyman-* absorption measurements. A reasonable
estimate of this range would be from 80 to 100 km.

In Equation (6.9) the pertinent parameters are calculated in the
following manner. An average value of\;%%é is obtained for each experi-
ment in the specific altitude range. From the molecular oxygen concentration,
an average value of H is calculated, and a model atmosphere is constructed.
The ratio Kr (htozl/n(l)) is then obtained from that model. As described
for the pressure calculation in Section 5.2, the optical depth F is

evaluated at one scale height above the lower boundary altitude.

6.4 Calculation of Neutral Temperatures from Molecular Oxygen Scale Height

Since our measurements are concerned with the D-region in which the
constituents of the upper atmosphere are in a well mixed state, the scale
height governing the distribution of molécular oxygen concentration may
be applied to all the constituents. If an average scale height is fitted
over the region of interest, an average neutral temperature may be extracted.

This follows from the definition of scale height,
H = n (6.10)
where k is Boltzmannk constant, Tn is the neutral temperature, m is the

atomic mass unit, M is the mean molecular mass, and g is the acceleration

due to gravity.
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Formulas (6.9) and (6.10), used to calculate. electron and neutral
temperatures, have been applied to several rocket experiments. Descrip-
tion of the conditions of launch and the temperature results will now

be presented.

6.5 Observed Difference Between Electron and Neutral Temperatures

In order to evaluate electron and neutral temperatures in the D-
region, it is necessary to measure the electron collision frequency
and to determine the molecular oxygen concentration in that region.
It was shown in Section 4.2 that the electron collision frequency may
be extracted from the measurement of the differential absorption of
two waves traveling through the ionosphere, and from the knowledge of
the electron denéity obtained from Faraday rotation. The molecular
oxygen concentration may be determined from the measurement of the
absorption of the Lyman-o radiation by means of ion chambers. There-
fore, a payload containing the radio propagation experiment and ultra-
violet ion chambers is adequate for the determination of electron and
neutral temperatures. Such a payload was designated "Type A" in Section
3.3. Several of the Type A payloads launched as a part of this program,
that have yielded molecular oxygen densities, and for which electron
collision.frequency models have been obtained, are listed in Table 6.1.
The rocket flights numbered 14.145 and 14.146 were the second and third
of a three-rocket sunrise series, launched at D-region sunrise and after
ground sunrise, respectively, on July 15, 1964. The rockets numbered
14.230 and 14.231 were a part of a five-rocket series launched in the

southern hemisphere from aboard USNS CROATAN, NASA's mobile carrier,
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to study the latitudinal variation of electron density. Rocket 14,246
was launched at nocon, On June 17, 1965, as a part of a four rocket
series, launched in April, June, September, and December, to study
the seasonal changes in D- and E-region electron densities and electron
collision frequencies. Details regarding these various rocket series
and their results have been presented in Section 4.5.

The results of the application of Equations (6.9) and (6.10) to
calculate Te and Tn are given in Table 6.1. Comparison of electron
and neutral temperatures listed in this table suggests that thermal
equilibrium conditions exist in the D- and lower E-regions of the
ionosphere. The probable error in the electron temperature computation
depends on the zenith angle at the time of the rocket launch. Proper
error compounding of the various measured parameters in Equation (6.9)
revealed that for large zenith angles, X 3_850, the probable error is
about 23% whereas for small zenith angles, X < 700, the probable error
is about 17%. At large zenith angles, a 10% error in the optical depth
factor is introduced, which in turn affects the molecular oxygen con-
centration, and increases the probable error in Te. The probable error
in the computation of the neutral temperature by Equation (6.10) is
the same as that involved in the extraction of the scale height from
molecular oxygen densities. Systematic errors of absorption crcss-
section and zenith angle do not affect the scale height, but the non-
ideal behavicr of the ion chamber introduces a probable error of a few
percent. Radiation other than Lyman-0. in the bandpass of the ion chamber

leads to an increase in the value of n(02) at high altitudes, whereas
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radiation that is absorbed less strongly than Lymanga tends toc decrease
the value of n(02) from its true value at lower altitudes (Smith and
Weeks, 1965). Therefore the scale height of the molecular oxygen dis-
tribution possesses a probable error of a few percent. The same error
may than be estimated for the neutral temperature.

For 14.145, 14.146, 14.231, and 14.246, the average neutral tem-
peratures computed from the molecular oxygen scale heights are in good
agreement with CIRA 1965 temperatures at the top of the mesopause.

The probable error associated with the CIRA temperatures has been given
by CIRA as +40 K at 90 km.

However, 14.232, launched 14° south of 14,231, shows a large in-
crease in temperature. Since both neutral and electron temperatures
have been found in Equations (6.9) and (6.10) to be directly propor-
tional to scale height, and since thermal equilibrium conditions are
still met, the temperature variation may be explained in terms of the
molecular oxygen scale height. The molecular oxygen measurements for
14.232 were made during the descent portion of the rocket trajectory
since no data were collected during the ascent due to failure of the
doors to gject on time. Furthermore, for this particular flight the
sensitivity of the photometer was low and a 10% probable error may be
attributed to the scale height value quoted in Table 6.1 (Weeks, private
communication). If the ascent collision model is applied for the descent
portion, re-calculation of the temperatures based upon the above yields
an electron temperature of 255°K compared to a neutral temperature of 257°K.

This temperature is s$till higher than the neutral temperature quoted in
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CIRA, but CIRA 1965 suggests a variation of 150°K from the mean value
of 213°K at 100 km. In addition, by taking account of the latitude
variation with a six-month change of date to apply CIRA 1965 values to
the southern hemisphere, an additional 20°K correction may be applied
for the maximum variation at 60° latitude and 80 km altitude. This

may then bring 14.232 results within reasonable limits.
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7. SUMMARY OF OBSERVATIONS AND RESULTS

Below 100 km, the simplest method for the determination of electron
temperature is derived from the consideration of the collision frequency
of electrons with neutrals. This report has attempted to describe the
experimental and analytical techniques involved in the measurement of
the various parameters needed for the computation of electron and
neutral temperatures. The results of the application of these methods
have been given in Section 6.5.

In Table 6.1, though the measured electron collision frequency
model for 14.232 is about 1.2 times larger than that for 14.231, this
does not imply a difference in the neutral temperature. The measured
electron collision frequency model for 14.231 agrees with that for
14.230, launched at a latitude of 29034'8 in the same series. An
identical procedure has been used for all rockets to extract the electron
collision frequency model from the agsorption data. Hence, the collision
frequencies are proportional to the neutral densities, since the same
factor relates the scale height of 14.232 to the other experiments,

Measurements made by Carver et al., (1964) from Woomera, Australia,
(lat. 30°S, long. 136°E), show a scale height of 6.5 km which agrees
with 14.231 measurements and northern hemisphere values. Moreover,
measurements made by Kupperian et al., (1959) at Fort Churchill, Carada
(59°N) for a spring rocket experiment show a sudden change of scale
height between 88 and 98 km, the same range as 14.232. 1In this range,

a scale height of 8 km is obtained from the molecular oxygen concentration




95

measured at Fort Churchill. Above 98 km, the scale height decreases
rapidly, and this has been interpreted as an indication of the dis-
sociation level for molecular oxygen., The increase in temperature for
14.232 may then be a latitude effect combined with possible anomalous
winfer conditions. This latitude effect, as compared with Kupperian
et gl.'s results in the northern hemisphere, has been also observed

by rocket grenade soundings at the lower altitudes (Nordberg et al.,
1965).

The seasonal variation of temperature, again confirmed by grenade
explosions, may be explained by the radiation unbalance theory proposed
by Kellogg (1961). Heating of the region 70-100 km in winter at high
latitudes may be due to a release of the energy of recombination of
atomic oxygen which is carried downward by diffusion., This energy
release mechanism has been verified by Young and Epstein (1962).
Another noteworthy possible source of energy may be internal atmospheric
gravity waves which, Hines (1965) suggests, might provide temperature
increase near the 95 km level and explain the observed irregularities.

Furthermore, it may be possible to examine the effect of the in-
crease of the temperature on the nitric oxide concentration, and there-
fore the electron density at the lower altitudes. Since an absolute
measure of the electron density is available, a verification of the
validity of the high temperature would be easily obtained. However,
since the height range of the calculated temperatures for 14.232 is
above 90 km, no effect on the nitric oxide concentration has been

observed at this altitude.
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It is obvious that more evidence should be accumulated to assert
the increasing scale height below the dissociation level at high latitudes.
Finally, it should be noted that the rocket flights listed in Table
6.1 were launched under a wide variety of ionospheric conditions. The
absorption recorded at one altitude differed from flight to flight.
The collision frequency and hence the electron temperature, extracted
from the absorption measurements, also varied from flight to flight,
However, in all cases, thermal equilibrium conditions were found to
exist in the D- and lower E-regions. This shows that thermal equilib-
rium exists at these altitudes regardless of the diurnal, seasonal, and

latitudinal conditions of the lower ionosphere.
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